Matematik: Geometri, 5 hp

Mathematics: Geometry, 5 credits

92MA12

Huvudområde

Matematik

Utbildningsnivå

Grundnivå

Kurstyp

Programkurs

Examinator

Mats Aigner

Kursansvarig

Mats Aigner

Studierektor eller motsvarande

Jesper Thorén
VOF = Valbar / Obligatorisk / Frivillig
Kursen ges för Termin Veckor Språk Ort/Campus VOF
L1A79 Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång biologi, 270 hp (Ingång biologi) 3 (HT 2021) 202134-202136 Svenska Linköping, Valla V
L1A79 Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång engelska, 270 hp (Ingång engelska) 3 (HT 2021) 202134-202136 Svenska Linköping, Valla V
L1A79 Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång historia, 270 hp (Ingång historia) 3 (HT 2021) 202134-202136 Svenska Linköping, Valla V
L1A79 Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång matematik, 270 hp (Ingång matematik) 3 (HT 2021) 202134-202136 Svenska Linköping, Valla V
L1A79 Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång samhällskunskap, 270 hp (Ingång samhällskunskap) 3 (HT 2021) 202134-202136 Svenska Linköping, Valla V
L1A79 Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång svenska, 270 hp (Ingång svenska) 3 (HT 2021) 202134-202136 Svenska Linköping, Valla V
L1A79 Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång textilslöjd, 270 hp (Ingång textilslöjd) 3 (HT 2021) 202134-202136 Svenska Linköping, Valla V
L1A79 Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9, ingång trä- och metallslöjd, 270 hp (Ingång trä- och metallslöjd) 3 (HT 2021) 202134-202136 Svenska Linköping, Valla V
L1AGY Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan, ingång biologi, 300 hp (Ingång biologi) 3 (HT 2021) 202134-202136 Svenska Linköping, Valla V
L1AGY Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan, ingång engelska, 300 hp (Ingång engelska) 3 (HT 2021) 202134-202136 Svenska Linköping, Valla V
L1AGY Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan, ingång historia, 300 hp (Ingång historia) 3 (HT 2021) 202134-202136 Svenska Linköping, Valla V
L1AGY Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan, ingång matematik, 300 hp (Ingång matematik) 3 (HT 2021) 202134-202136 Svenska Linköping, Valla V
L1AGY Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan, ingång samhällskunskap, 330 hp (Ingång samhällskunskap) 3 (HT 2021) 202134-202136 Svenska Linköping, Valla V
L1AGY Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan, ingång svenska, 330 hp (Ingång svenska) 3 (HT 2021) 202134-202136 Svenska Linköping, Valla V

Huvudområde

Matematik

Utbildningsnivå

Grundnivå

Fördjupningsnivå

G1X

Kursen ges för

  • Ämneslärarprogrammet med inriktning mot arbete i grundskolans årskurs 7-9
  • Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan

Förkunskapskrav

Grundläggande behörighet på grundnivå, områdesbehörighet A6c/6c samt Matematik 4 eller Matematik D, samt alla tidigare VFU-kurser i studiegången godkända

Lärandemål

Efter avslutad kurs skall den studerande kunna
- läsa och tolka matematisk text inom geometri
- formulera och förklara grundläggande begrepp, räknelagar
och satser inom geometri
- lösa problem inom geometri genom att tillämpa centrala
begrepp, satser och metoder
- utföra standardmässiga beräkningar
- kontrollera resultat och delresultat, för att verifiera att dessa
är korrekta eller rimliga

Kursinnehåll

I kursen arbetar studenten utgående från grundläggande
definitioner och axiom och med hjälp av logiska resonemang och
bevis med färdighetsträning i form av såväl räkneövningar som
teoretiska resonemang, genom med att lösa uppgifter, välja
lämplig lösningsgång, undersöka och förklara matematiska
samband, samt illustrera och presentera lösningar inom klassisk geometri, speciellt kongruens och likformighet, grundläggande
geometriska satser som Pythagoras sats, sinus- och
cosinussatsen, randvinkelsatsen, kordasatsen, och bisektrissatsen. 

Undervisnings- och arbetsformer

Undervisningen sker i form av föreläsningar, lektioner, seminarier, samt
självständiga studier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       

Examination

Gäller för alla kurser oavsett betygsskala.

  • Studerande som underkänts två gånger på kursen eller del av kursen har rätt att begära en annan examinator vid förnyat examinationstillfälle.

Om kursen har tregradig betygsskala (U – VG) gäller följande:

  • Studerande som godkänts i prov får ej delta i förnyat prov för högre betyg.

Om kursen är en VfU-kurs gäller följande:

  • Examination av tillämpade sociala och didaktiska förmågor begränsas till tre (3) tillfällen.

För kurser där obligatoriska moment ingår gäller följande:

  • Om det finns särskilda skäl, och om det med hänsyn till det obligatoriska momentets karaktär är möjligt, får examinator besluta att ersätta det obligatoriska momentet med en annan likvärdig uppgift.

Om LiU: s koordinator för studenter med funktionsnedsättning har beviljat en student rätt till anpassad examination vid salstentamen har studenten rätt till det. Om koordinatorn istället har gett studenten en rekommendation om anpassad examination eller alternativ examinationsform, får examinator besluta om detta om examinator bedömer det möjligt utifrån kursens mål.

Betygsskala

Tregradig skala, U, G, VG

Övrig information

Kursen reviderad 2020-04-02; Dnr LiU-2020-01361

Planering och genomförande av kurs skall utgå från kursplanens formuleringar. Den kursvärdering som skall ingå i varje kurs skall därför behandla frågan om hur kursen överensstämmer med kursplanen.

Kursen bedrivs på ett sådant sätt att både mäns och kvinnors erfarenhet och kunskaper synliggörs och utvecklas.

Om undervisnings- och examinationsspråk

Undervisningsspråk visas på respektive kurstillfälle på fliken "Översikt". Examinationsspråk relaterar till undervisningsspråk enligt nedan:

  • Om undervisningsspråk är Svenska ges kursen i sin helhet eller till stora delar på svenska. Observera att även om undervisningsspråk är svenska kan delar av kursen ges på engelska. Examinationsspråk är svenska. 
  • Om undervisningsspråk är Svenska/Engelska kan kursen i sin helhet ges på engelska vid behov. Examinationsspråk är svenska om kursen ges på svenska eller engelska om kursen ges på engelska.
  • Om undervisningsspråk är Engelska ges kursen i sin helhet på engelska. Examinationsspråk är engelska.

Institution

Matematiska institutionen
Kod Benämning Omfattning Betygsskala
STN1 Skriftlig tentamen: salstentamen Geometri 5 hp U, G, VG

Gäller för alla kurser oavsett betygsskala.

  • Studerande som underkänts två gånger på kursen eller del av kursen har rätt att begära en annan examinator vid förnyat examinationstillfälle.

Om kursen har tregradig betygsskala (U – VG) gäller följande:

  • Studerande som godkänts i prov får ej delta i förnyat prov för högre betyg.

Om kursen är en VfU-kurs gäller följande:

  • Examination av tillämpade sociala och didaktiska förmågor begränsas till tre (3) tillfällen.
- Bergsten, C., & Fogelberg, G. Geometrins grunder. Kompendium, Matematiska institutionen.

Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida.

Det finns inga filer att visa.