Optimeringslära, fortsättningskurs, 6 hp

Operations Research, Extended Course, 6 credits

TAOP62

Huvudområde

Matematik Tillämpad matematik

Utbildningsnivå

Grundnivå

Kurstyp

Programkurs

Examinator

Elina Rönnberg

Studierektor eller motsvarande

Nils-Hassan Quttineh

Undervisningstid

Preliminär schemalagd tid: 54 h
Rekommenderad självstudietid: 106 h
VOF = Valbar / Obligatorisk / Frivillig
Kursen ges för Termin Period Block Språk Ort/Campus VOF
6CIII Civilingenjör i industriell ekonomi 4 (VT 2018) 1 3 Svenska Linköping, Valla O
6CIEI Civilingenjör i industriell ekonomi - internationell, franska 4 (VT 2018) 1 3 Svenska Linköping, Valla O
6CIEI Civilingenjör i industriell ekonomi - internationell, japanska 4 (VT 2018) 1 3 Svenska Linköping, Valla O
6CIEI Civilingenjör i industriell ekonomi - internationell, kinesiska 4 (VT 2018) 1 3 Svenska Linköping, Valla O
6CIEI Civilingenjör i industriell ekonomi - internationell, spanska 4 (VT 2018) 1 3 Svenska Linköping, Valla O
6CIEI Civilingenjör i industriell ekonomi - internationell, tyska 4 (VT 2018) 1 3 Svenska Linköping, Valla O

Huvudområde

Matematik, Tillämpad matematik

Utbildningsnivå

Grundnivå

Fördjupningsnivå

G2X

Kursen ges för

  • Civilingenjör i industriell ekonomi - internationell
  • Civilingenjör i industriell ekonomi

Förkunskapskrav

OBS! Tillträdeskrav för icke programstudenter omfattar vanligen också tillträdeskrav för programmet och ev. tröskelkrav för progression inom programmet, eller motsvarande.

Rekommenderade förkunskaper

Optimeringslära grundkurs

Lärandemål

Inom optimeringslära behandlas matematiska teorier och metoder som syftar till att analysera och lösa beslutsproblem som uppkommer inom teknik, ekonomi, medicin, etcetera. Kursen ger, tillsammans med grundkursen, en bred orientering om optimeringslära, med inriktning mot grundläggande teori och metoder för diskreta optimeringsproblem i ändlig dimension, samt en inblick i dess tillämpning för att analysera praktiska optimeringsfrågeställningar. Efter fullgjord kurs skall studenten:

  • kunna redogöra för viktiga klasser av optimeringsproblem och kunna klassificera optimeringsproblem utifrån deras egenskaper, som till exempel i nätverk eller diskreta problem
  • kunna modellera matematiska modeller av enkla optimeringsproblem
  • kunna redogöra för grundläggande begrepp, som till exempel optimalitetsvillkor, svag och stark dualitet, samt giltiga olikheter
  • ha kunskap om och kunna använda grundläggande teori för några vanliga typer av optimeringsproblem, som till exempel dualitetsteori för linjära (nätverks)problem, och ha kännedom om och kunna utnyttja optimalitetsvillkor, som till exempel Bellmans ekvationer, för att avgöra optimalitet för ett en föreslagen lösning
  • kunna redogöra för olika grundläggande algoritmer och kunna sammanfatta principerna bakom algoritmerna för att lösa några vanligt förekommande typer av optimeringsproblem, som till exempel trädsökning för diskreta problem
  • kunna utnyttja relaxeringar, och speciellt Lagrange-dualitet, för att approximera optimeringsproblem, samt kunna stänga in optimalvärden med hjälp av optimistiska och pessimistiska uppskattningar
  • kunna använda vanligt förekommande optimeringsprogramvara för att lösa standardmässiga optimeringsproblem
  • ha viss kunskap om praktiska tillämpningar av optimeringsproblem.

 

Kursinnehåll

  • Nätverksoptimering: Problem med nätverksstruktur, linjärprogrammering med heltalsegenskap, billigaste vägar, flöden i nätverk, minkostnadsflödesproblem, heltals problem med grafstruktur.
  • Heltalsprogrammering: Optimeringsmodeller med diskreta variabler, lösningsmetoder baserade på trädsökning, plansnittning, heuristiker och metaheuristiker.
  • Langrangerelaxation: Grundläggande teori och principer för lösningsmetoder baserade på Lagrangerelaxation. Fokus på hur skattningar kan genereras och tillämpningar på nätverksproblem och heltalsproblem.
  • Dynamisk programmering: Problemformulering, optimalitetsprincipen, tillämpningar på lagerhållningsproblem och resursallokeringsproblem.

 

Undervisnings- och arbetsformer

Föreläsningar som behandlar teori, modellformulering, problemlösning och tillämpningar. Lektionerna ägnas åt övning i modellformulering och problemlösning. Obligatoriska laborationer i grupp, med fokus på modellformulering och användning av optimeringsprogramvara.

Examination

LAB1Laborationer1 hpU, G
TEN1Skriftlig tentamen5 hpU, 3, 4, 5

Betygsskala

Fyrgradig skala, LiU, U, 3, 4, 5

Övrig information

Påbyggnadskurser: Optimering av stora system, Optimering av försörjningskedjor, Matematisk optimering, Finansiell optimering

Om undervisningsspråk

Undervisningsspråk visas på respektive kurstillfälle på fliken "Översikt".

  • Observera att även om undervisningsspråk är svenska kan delar av kursen ges på engelska.
  • Om undervisningsspråk är Svenska/Engelska kan kursen i sin helhet ges på engelska vid behov.
  • Om undervisningsspråk är Engelska ges kursen i sin helhet på engelska. 

Övrigt

Kursen bedrivs på ett sådant sätt att både mäns och kvinnors erfarenhet och kunskaper synliggörs och utvecklas.

Planering och genomförande av kurs skall utgå från kursplanens formuleringar. Den kursvärdering som ingår i kursen skall därför genomföras med kursplanen som utgångspunkt. 

Institution

Matematiska institutionen

Studierektor eller motsvarande

Nils-Hassan Quttineh

Examinator

Elina Rönnberg

Kurshemsida och andra länkar

Undervisningstid

Preliminär schemalagd tid: 54 h
Rekommenderad självstudietid: 106 h

Kurslitteratur

Böcker

  • Henningsson M, Lundgren J, Rönnqvist M, Värbrand P, (2010) Optimeringslära övningsbok 2. uppl. Lund : Studentlitteratur, 2010
    ISBN: 9789144067605
  • Lundgren, Jan, Rönnqvist, Mikael, Värbrand, Peter, (2008) Optimeringslära 3. uppl. Lund : Studentlitteratur, 2008
    ISBN: 9789144053141
Kod Benämning Omfattning Betygsskala
LAB1 Laborationer 1 hp U, G
TEN1 Skriftlig tentamen 5 hp U, 3, 4, 5

Kursplan

För varje kurs finns en kursplan. I kursplanen anges kursens mål och innehåll samt de särskilda förkunskaper som erfordras för att den studerande skall kunna tillgodogöra sig undervisningen.

Schemaläggning

Schemaläggning av kurser görs efter, för kursen, beslutad blockindelning. För kurser med mindre än fem deltagare, och flertalet projektkurser läggs inget centralt schema.

Avbrott på kurs

Enligt rektors beslut om regler för registrering, avregistrering samt resultatrapportering (Dnr LiU-2015-01241) skall avbrott i studier registreras i Ladok. Alla studenter som inte deltar i kurs man registrerat sig på är alltså skyldiga att anmäla avbrottet så att kursregistreringen kan 
tas bort. Avanmälan från kurs görs via webbformulär, www.lith.liu.se/for-studenter/kurskomplettering?l=sv. 

Inställd kurs

Kurser med få deltagare ( < 10) kan ställas in eller organiseras på annat sätt än vad som är angivet i kursplanen. Om kurs skall ställas in eller avvikelse från kursplanen skall ske prövas och beslutas detta av programnämnden. 

Föreskrifter rörande examination och examinator 

Se särskilt beslut i regelsamlingen: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622678 

Examination

Tentamen

Skriftlig och muntlig tentamen ges minst tre gånger årligen; en gång omedelbart efter kursens slut, en gång i augustiperioden samt vanligtvis i en av omtentamensperioderna. Annan placering beslutas av programnämnden.

Principer för tentamensschemat för kurser som följer läsperioderna:

  • kurser som ges Vt1 förstagångstenteras i mars och omtenteras i juni och i augusti
  • kurser som ges Vt2 förstagångstenteras i maj och omtenteras i augusti och i oktober
  • kurser som ges Ht1 förstagångstenteras i oktober och omtenteras i januari och augusti
  • kurser som ges Ht2 förstagångstenteras i januari och omtenteras i påsk och i augusti 

Tentamensschemat utgår från blockindelningen men avvikelser kan förekomma främst för kurser som samläses/samtenteras av flera program samt i lägre årskurs.

  • För kurser som av programnämnden beslutats vara vartannatårskurser ges tentamina 3 gånger endast under det år kursen ges.
  • För kurser som flyttas eller ställs in så att de ej ges under något eller några år ges tentamina 3 gånger under det närmast följande året med tentamenstillfällen motsvarande dem som gällde före flyttningen av kursen.
  • Har undervisningen upphört i en kurs ges under det närmast följande året tre tentamina samtidigt som tentamen ges i eventuell ersättningskurs, alternativt i samband med andra omtentamina. Dessutom ges tentamen ytterligare en gång under det därpå följande året om inte programnämnden föreskriver annat.
  • Om en kurs ges i flera perioder under året (för program eller vid skilda tillfällen för olika program) beslutar programnämnden/programnämnderna gemensamt om placeringen av och antalet omtentamina. 

Anmälan till tentamen

För deltagande i tentamina krävs att den studerande gjort förhandsanmälan i Studentportalen under anmälningsperioden, dvs tidigast 30 dagar och senast 10 dagar före tentamensdagen. Anvisad sal meddelas fyra dagar före tentamensdagen via e-post. Studerande, som inte förhandsanmält sitt deltagande riskerar att avvisas om plats inte finns inom ramen för tillgängliga skrivningsplatser.

Teckenförklaring till tentaanmälningssystemet:
  ** markerar att tentan ges för näst sista gången
  * markerar att tentan ges för sista gången 

Ordningsföreskrifter för studerande vid tentamensskrivningar

Se särskilt beslut i regelsamlingen: http://styrdokument.liu.se/Regelsamling/VisaBeslut/622682

Plussning

Vid Tekniska högskolan vid LiU har studerande rätt att genomgå förnyat prov för högre betyg på skriftliga tentamina samt datortentamina, dvs samtliga provmoment med kod TEN och DAT. På övriga examinationsmoment ges inte möjlighet till plussning, om inget annat anges i kursplan.

Regler för omprov

För regler för omprov vid andra examinationsformer än skriftliga tentamina och datortentamina hänvisas till LiU-föreskrifterna för examination och examinator, http://styrdokument.liu.se/Regelsamling/VisaBeslut/622678. 

Plagiering

Vid examination som innebär rapportskrivande och där studenten kan antas ha tillgång till andras källor (exempelvis vid självständiga arbeten, uppsatser etc) måste inlämnat material utformas i enlighet med god sed för källhänvisning (referenser eller citat med angivande av källa) vad gäller användning av andras text, bilder, idéer, data etc. Det ska även framgå ifall författaren återbrukat egen text, bilder, idéer, data etc från tidigare genomförd examination.

Underlåtelse att ange sådana källor kan betraktas som försök till vilseledande vid examination.

Försök till vilseledande

Vid grundad misstanke om att en student försökt vilseleda vid examination eller när en studieprestation ska bedömas ska enligt Högskoleförordningens 10 kapitel examinator anmäla det vidare till universitetets disciplinnämnd. Möjliga konsekvenser för den studerande är en avstängning från studierna eller en varning. För mer information se https://www.student.liu.se/studenttjanster/lagar-regler-rattigheter?l=sv.

Betyg

Företrädesvis skall betygen underkänd (U), godkänd (3), icke utan beröm godkänd (4) och med beröm godkänd (5) användas. Kurser som styrs av tekniska fakultetsstyrelsen fastställt tentamensschema skall därvid särskilt beaktas.

  1. Kurser med skriftlig tentamen skall ge betygen (U, 3, 4, 5).
  2. Kurser med stor del tillämpningsinriktade moment såsom laborationer, projekt eller grupparbeten får ges betygen underkänd (U) eller godkänd (G).

Examinationsmoment

  1. Skriftlig tentamen (TEN) skall ge betyg (U, 3, 4, 5).
  2. Examensarbete samt självständigt arbete ger betyg underkänd (U) eller godkänd (G).
  3. Examinationsmoment som kan ge betygen underkänd (U) eller godkänd (G) är laboration (LAB), projekt (PRA), kontrollskrivning (KTR), muntlig tentamen (MUN), datortentamen (DAT), uppgift (UPG), hemtentamina (HEM).
  4. Övriga examinationsmoment där examinationen uppfylls framför allt genom aktiv närvaro som annat (ANN), basgrupp (BAS) eller moment (MOM) ger betygen underkänd (U) eller godkänd (G).

Rapportering av den studerandes examinationsresultat sker på respektive institution.

Regler

Universitetet är en statlig myndighet vars verksamhet regleras av lagar och förordningar, exempelvis Högskolelagen och Högskoleförordningen. Förutom lagar och förordningar styrs verksamheten av ett antal styrdokument. I Linköpings universitets egna regelverk samlas gällande beslut av regelkaraktär som fattats av universitetsstyrelse, rektor samt fakultets- och områdesstyrelser. 

LiU:s regelsamling angående utbildning på grund- och avancerad nivå nås på http://styrdokument.liu.se/Regelsamling/Innehall/Utbildning_pa_grund-_och_avancerad_niva. 

Böcker

Henningsson M, Lundgren J, Rönnqvist M, Värbrand P, (2010) Optimeringslära övningsbok 2. uppl. Lund : Studentlitteratur, 2010

ISBN: 9789144067605

Lundgren, Jan, Rönnqvist, Mikael, Värbrand, Peter, (2008) Optimeringslära 3. uppl. Lund : Studentlitteratur, 2008

ISBN: 9789144053141

I = Introducera, U = Undervisa, A = Använda
I U A Moduler Kommentar
1. ÄMNESKUNSKAPER
1.1 Kunskaper i grundläggande (motsvarande G1X) matematiska och naturvetenskapliga ämnen
X
X
TEN1
Använder algebra- och analyskunskaper
1.2 Kunskaper i grundläggande (motsvarande G1X) teknikvetenskapliga ämnen
X
TEN1
Vid modellering av tekniska problem
1.3 Fördjupade kunskaper (motsvarande G2X), metoder och verktyg inom något/några teknik- och naturvetenskapliga ämnen

                            
1.4 Väsentligt fördjupade kunskaper (motsvarande A1X), metoder och verktyg inom något/några teknik- och naturvetenskapliga ämnen

                            
1.5 Insikt i aktuellt forsknings- och utvecklingsarbete

                            
2. INDIVIDUELLA OCH YRKESMÄSSIGA FÄRDIGHETER OCH FÖRHÅLLNINGSSÄTT
2.1 Analytiskt tänkande och problemlösning
X
X
X
LAB1
TEN1
Centralt för opt, kännetecknar anv. av opt.
2.2 Experimenterande och undersökande arbetssätt samt kunskapsbildning

                            
2.3 Systemtänkande
X
LAB1
TEN1
Centralt för opt, kännetecknar anv. av opt.
2.4 Förhållningssätt, tänkande och lärande
X
Fokus på att rimlighetsbedöma resultat av beräkningar
2.5 Etik, likabehandling och ansvarstagande

                            
3. FÖRMÅGA ATT ARBETA I GRUPP OCH ATT KOMMUNICERA
3.1 Arbete i grupp
X
Laborationer i grupp
3.2 Kommunikation
X
Muntlig redovisning av laborationer
3.3 Kommunikation på främmande språk

                            
4. PLANERING, UTVECKLING, REALISERING OCH DRIFT AV TEKNISKA PRODUKTER OCH SYSTEM MED HÄNSYN TILL AFFÄRSMÄSSIGA OCH SAMHÄLLELIGA BEHOV OCH KRAV
4.1 Samhälleliga villkor, inklusive ekonomiskt, socialt och ekologiskt hållbar utveckling

                            
4.2 Företags- och affärsmässiga villkor

                            
4.3 Att identifiera behov samt strukturera och planera utveckling av produkter och system
X
LAB1
TEN1
Tränar matematisk modellering
4.4 Att konstruera produkter och system

                            
4.5 Att realisera produkter och system
X
LAB1
Användning av optimeringsprogramvara
4.6 Att ta i drift och använda produkter och system

                            
5. PLANERING, GENOMFÖRANDE OCH PRESENTATION AV FORSKNINGS- ELLER UTVECKLINGSPROJEKT MED HÄNSYN TILL VETENSKAPLIGA OCH SAMHÄLLELIGA BEHOV OCH KRAV
5.1 Samhälleliga villkor, inklusive ekonomiskt, socialt och ekologiskt hållbar utveckling för kunskapsutveckling

                            
5.2 Ekonomiska villkor för kunskapsutveckling

                            
5.3 Att identifiera behov samt strukturera och planera forsknings- eller utvecklingsprojekt
X
LAB1
Omfattande laborationer som redovisas muntligt
5.4 Att genomföra forsknings- eller utvecklingsprojekt
X
LAB1
Omfattande laborationer som redovisas muntligt
5.5 Att redovisa och utvärdera forsknings- eller utvecklingsprojekt
X
LAB1
Omfattande laborationer som redovisas muntligt

Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida. Klicka på filen för att spara ner och öppna den.