Matematik: Transformteori, 4 hp

Mathematics: Transform Theory, 4 credits

93MA54

Huvudområde

Matematik

Utbildningsnivå

Grundnivå

Kurstyp

Programkurs

Examinator

Johan Thim

Kursansvarig

Johan Thim

Studierektor eller motsvarande

Jesper Thorén
VOF = Valbar / Obligatorisk / Frivillig
Kursen ges för Termin Veckor Språk Ort/Campus VOF
L1AGY Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan, ingång matematik, 300 hp (Ingång matematik) 8 (VT 2024) 202404-202423 Svenska Linköping, Valla V

Huvudområde

Matematik

Utbildningsnivå

Grundnivå

Fördjupningsnivå

G2X

Kursen ges för

  • Ämneslärarprogrammet med inriktning mot arbete i gymnasieskolan

Förkunskapskrav

Matematik (1-60 hp) med minst 30 hp godkända inklusive Matematikdidaktik 1 och Matematikdidaktik 2 samt alla tidigare VFU-kurser enligt studiegången godkända.

Lärandemål

Efter avslutad kurs skall studenten
- ha kännedom om och kunna redogöra för tillräckliga villkor för att de olika transformerna skall existera
- ha kännedom om och kunna använda enkla egenskaper hos transformerna (t. ex. beteende i oändligheten, skalnings- och förskjutningsregler, derivations- och integrationsregler, regler för multiplikation med tidsvariabeln)
- kunna härleda transformer av vanliga funktioner
- ha kännedom om och kunna redogöra för inversionssatser, entydighetssatser, faltningsformler och formler av typen Parseval-Plancherel,
- kunna tillämpa transformteorin för att lösa problem såsom differentialekvationer, differensekvationer och faltningsekvationer
- ha kännedom om och kunna tillämpa några resultat om likformig konvergens (kontinuitet, deriverbarhet och integrerbarhet hos gränsfunktionen, Weierstrass majorantsats).

Kursinnehåll

Kursen avser att ge den studerande fördjupade kunskaper inom områdena fourieranalys och transformteori, som har talrika tillämpningar inom såväl tekniken som matematiken. I kursen arbetar den studerande med några viktiga linjära transformationer, med hjälp av vilka linjära problem (differential-, integral- differensekvationer) kan översättas till mer hanterbara algebraiska problem, vilkas lösningar sedan översättas tillbaka till lösningar till de ursprungliga problemen.
Följande studeras: Fourierserier, som översätter periodiska funktioner till funktionsserier. Dessa serier används för att analysera periodiska förlopp. Här är konvergensproblemet för funktionsserier viktigt, och vi tar upp likformig och punktvis konvergens samt konvergens i medel för Fourierserier. Bessels olikhet och Parsevals sats är nyckelresultat. Vi studerar även tillämpningar av fourierserier för att lösa randvärdesproblem för linjära partiella differentialekvationer.
Fouriertransformer: dessa transformer används för analys av icke-periodiska förlopp. Inversionsformeln för Fouriertransformer är central och verktygen omfattar även räkneregler, faltningsformeln och Plancherels sats.
Laplacetransformen: översätter funktioner av en reell variabel till funktioner definierade i det komplexa planet, och används för att lösa bl a begynnelsevärdesproblem . Verktygen omfattar räkneregler, faltningsformeln samt begynnelse- och slutvärdessatsen.
Z-transformen: översätter funktioner på de naturliga talen till potensserier, och används för att lösa differensekvationer. Verktygen omfattar räkneregler och faltningsformeln.

Undervisnings- och arbetsformer

Föreläsningar, lektioner samt självständiga studier.

Examination

Gäller för alla kurser oavsett betygsskala.

  • Studerande som underkänts två gånger på kursen eller del av kursen har rätt att begära en annan examinator vid förnyat examinationstillfälle.

Om kursen har tregradig betygsskala (U – VG) gäller följande:

  • Studerande som godkänts i prov får ej delta i förnyat prov för högre betyg.

För kurser där obligatoriska moment ingår gäller följande:

  • Om det finns särskilda skäl, och om det med hänsyn till det obligatoriska momentets karaktär är möjligt, får examinator besluta att ersätta det obligatoriska momentet med en annan likvärdig uppgift.

Om LiU: s koordinator för studenter med funktionsnedsättning har beviljat en student rätt till anpassad examination vid salstentamen har studenten rätt till det.  

Om koordinatorn har gett studenten en rekommendation om anpassad examination eller alternativ examinationsform, får examinator besluta om detta om examinator bedömer det möjligt utifrån kursens mål.  

Examinator får också besluta om anpassad examination eller alternativ examinationsform om examinator bedömer att det finns synnerliga skäl och examinator bedömer det möjligt utifrån kursens mål.

Betygsskala

Tregradig skala, U, G, VG

Övrig information

Kursen reviderad 2020-04-02; Dnr LiU-2020-01361

Planering och genomförande av kurs skall utgå från kursplanens formuleringar. Den kursvärdering som skall ingå i varje kurs skall därför behandla frågan om hur kursen överensstämmer med kursplanen.

Kursen bedrivs på ett sådant sätt att likvärdiga villkor råder med avseende på kön, könsöverskridande identitet eller uttryck, etnisk tillhörighet, religion eller annan trosuppfattning, funktionsnedsättning, sexuell läggning och ålder.

Om det föreligger synnerliga skäl får rektor i särskilt beslut ange förutsättningarna för, och delegera rätten att besluta om, tillfälliga avsteg från denna kursplan.

Om undervisnings- och examinationsspråk

Undervisningsspråk visas på respektive kurstillfälle på fliken "Översikt". Examinationsspråk relaterar till undervisningsspråk enligt nedan:

  • Om undervisningsspråk är svenska ges kursen i sin helhet eller till stora delar på svenska. Observera att även om undervisningsspråk är svenska kan delar av kursen ges på engelska. Examinationsspråk är svenska.
  • Om undervisningsspråk är svenska/engelska kan kursen i sin helhet ges på engelska vid behov. Examinationsspråk är svenska om kursen ges på svenska eller engelska om kursen ges på engelska.
  • Om undervisningsspråk är engelska ges kursen i sin helhet på engelska. Examinationsspråk är engelska.

Institution

Matematiska institutionen
Kod Benämning Omfattning Betygsskala
STN1 Skriftlig tentamen: salstentamen Transformteori 4 hp U, G, VG
Det finns ingen kurslitteratur tillgänglig på studieinfo för den här kursen.

Denna flik innehåller det material som är publikt i Lisam. Den information som publiceras här är inte juridiskt bindande, sådant material hittar du under övriga flikar på denna sida.

Det finns inga filer att visa.